15 research outputs found

    Immunohistochemical localization of galectin-3 in the granulomatous lesions of paratuberculosis-infected bovine intestine

    Get PDF
    The presence of galectin-3 was immunohistochemically quantified in bovine intestines infected with paratuberculosis (Johne's disease) to determine whether galectin-3 was involved in the formation of granulation tissue associated with the disease. Mycobacterium avium subsp. paratuberculosis infection was histochemically confirmed using Ziehl-Neelsen staining and molecularly diagnosed through rpoB DNA sequencing. Galectin-3 was detected in the majority of inflammatory cells, possibly macrophages, in the granulomatous lesions within affected tissues, including the ileum. These findings suggest that galectin-3 is associated with the formation of chronic granulation tissues in bovine paratuberculosis, probably through cell adhesion and anti-apoptosis mechanisms

    Sparse Diffusion Least Mean-Square Algorithm with Hard Thresholding over Networks

    No full text
    This paper proposes a distributed estimation technique utilizing the diffusion least mean-square (LMS) algorithm, specifically designed for sparse systems in which many coefficients of the system are zeros. To efficiently utilize the sparse representation of the system and achieve a promising performance, we have incorporated L0-norm regularization into the diffusion LMS algorithm. This integration is accomplished by employing hard thresholding through a variable splitting method into the update equation. The efficacy of our approach is validated by comprehensive theoretical analysis, rigorously examining the mean stability as well as the transient and steady-state behaviors of the proposed algorithm. The proposed algorithm preserves the behavior of large coefficients and strongly enforces smaller coefficients toward zero through the relaxation of L0-norm regularization. Experimental results show that the proposed algorithm achieves superior convergence performance compared with conventional sparse algorithms

    Resting-state electroencephalographic characteristics related to mild cognitive impairments

    No full text
    Alzheimer's disease (AD) causes a rapid deterioration in cognitive and physical functions, including problem-solving, memory, language, and daily activities. Mild cognitive impairment (MCI) is considered a risk factor for AD, and early diagnosis and treatment of MCI may help slow the progression of AD. Electroencephalography (EEG) analysis has become an increasingly popular tool for developing biomarkers for MCI and AD diagnosis. Compared with healthy elderly, patients with AD showed very clear differences in EEG patterns, but it is inconclusive for MCI. This study aimed to investigate the resting-state EEG features of individuals with MCI (n = 12) and cognitively healthy controls (HC) (n = 13) with their eyes closed. EEG data were analyzed using spectral power, complexity, functional connectivity, and graph analysis. The results revealed no significant difference in EEG spectral power between the HC and MCI groups. However, we observed significant changes in brain complexity and networks in individuals with MCI compared with HC. Patients with MCI exhibited lower complexity in the middle temporal lobe, lower global efficiency in theta and alpha bands, higher local efficiency in the beta band, lower nodal efficiency in the frontal theta band, and less small-world network topology compared to the HC group. These observed differences may be related to underlying neuropathological alterations associated with MCI progression. The findings highlight the potential of network analysis as a promising tool for the diagnosis of MCI
    corecore